
J .  Fluid Mech. (1986), vol. 171, pp. 2W218 
Printed in Great Britain 

209 

The force on an axisymmetric body in linearized, 
time-dependent motion: a new memory term 
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In contrast to the steady Stokes equations for creeping motion, the time-dependent 
linearized Naviel-Stokes equations have only been solved for very restricted 
geometries, the solution for the sphere being the sole solution for an isolated fkite 
body. In the present paper, the linearized Navier-Stokes equations are further 
explored and a simple expression is derived which relates the force on an arbitrary 
axisymmetric body in oscillatory motion to the solution for the stream function in 
the far field. This result is applied to the case of a slightly eccentric spheroid and it 
is shown that the total hydrodynamic force contains four terms, three of which 
correspond to the classical solutions for the Stokes drag, added mass and Basset 
force on the perturbed sphere; the fourth term is only present when the body is 
non-spherical. In  contrast to the three classical forces, the new term is not a simple 
power of the dimensionless frequency parameter iL2w/v, in which L is a length-scale, 
w is the frequency of oscillation and v is the kinematic viscosity of the fluid. A Laplace 
superposition is then used to find the force on the spheroid in an arbitrary 
axisymmetric motion with velocity U(t). The new memory term decays faster than 
the Basset force at large times and is bounded at short times. 

1. Introduction 
The linearized Navier-Stokes equations were first solved for the oscillatory 

motions of a sphere along a diameter, a cylinder along a diameter, and a flat wall 
in its own plane by Stokes (1851). In  particular, he found the hydrodynamic force 
on the oscillating sphere to be 

F = Re{-6xpUa(l+A+fA2) ehiot}, (1) 

in which ,u is the fluid viscosity, U and a are the peak velocity and radius of the sphere 
and A is a dimensionless parameter given by 

The frequency of oscillation is w and v is the kinematic viscosity of the fluid. Basset 
(1888) integrated (1) to obtain the force on a sphere in an arbitrary time-dependent 
motion with velocity U(t)  : 
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Stokes formula (1)  contains three terms and is a simple quadratic function of wi. The 
first term is in phase with U and is equal to the so-called steady Stokes drag. 
The third term, which is proportional to w ,  is in out of phase with U and is the 
non-dissipative added-mass force, The middle term, which has a phase lag of in, is 
proportional to J and is the so-called Basset force. This term describes the growth 
of the time-dependent boundary layer at the body surface and the displacement 
effect of the viscous layer on the inviscid pressure field. 

It is interesting to note that if the force on the sphere is calculated as an asymptotic 
series for small w starting with the steady Stokes equations and including small 
inertial effects, the series terminates after three terms and yields equation (1) .  
Similarly, if an asymptotic series is developed for large w ,  starting with potential flow 
and including boundary-layer effects (cf. Batchelor 1967) equation (1) is also 
obtained wherein the damping force on the oscillating sphere can be identified as the 
part of (1) in phase with the velocity. Thus, for a sphere a t  least, the Basset force 
on an isolated body a t  all frequencies can be obtained by considering the first-order 
inertial correction to the Stokes drag, or the first-order boundary-layer correction to 
the virtual mass in small-amplitude motion. 

Now for any body shape in axisymmetric flow, we can obtain the small-w 
behaviour from the quasi-steady Stokes equations using the formula given by Payne 

r$ 
T+cc wz 

& Pel1 (1960) : 
F = 8n: lim-, (4) 

in which @ is the stream function, r is the distance from the origin located a t  the 
centre of the body, and w is the distance from the axis of symmetry. We can similarly 
obtain the large-o behaviour from potential flow. The question which then arises is: 
‘Can we derive the middle term, i.e. the Basset force for an arbitrary body, as a 
first-order correction to the Stokes drag or the virtual mass?’, or equivalently: ‘Is 
the hydrodynamic force on an oscillating body of arbitrary shape a quadratic 
function of h with different coefficients 1 ’ This possibility is suggested by the fact that 
the coefficients of both the steady term in phase with the velocity and the added mass 
term depend only on the geometry. If the answer to these questions is yes, then we 
have a very quick method for obtaining the hydrodynamic force on a variety of body 
shapes for which the Stokes drag and virtual mass are already known. Unfortunately, 
the answer is no; it is shown below that even for a nearly spherical body the force 
is not quadratic in h and that the functional form of the Basset force and its phase 
depend on the body geometry. 

First, the analogue of Payne & Pell’s result (4) will be derived for an arbitrary 
axisymmetric body in oscillating flow. Then this result will be applied to a nearly 
spherical body to show how the eccentricity leads to a different functional form for 
the total Basset force on the body. This force will be shown to consist of two 
components, one of which is of the standard form of the Basset force and a second 
term which, when integrated over all frequencies, leads to a new force with a different 
memory function that has a non-singular behaviour at short times. For convenience, 
we choose the body to be an oblate spheroid of small eccentricity since exact solutions 
for a spheroid exist for both the steady Stokes drag and the added-mass force. 

Since Stokes’s celebrated solutions were published, very little new work has 
appeared for the unsteady linearized equation. All the problems described in the 
literature (Basset 1888; Batchelor 1967; Felderhof 1976a, b ;  Lin 1986; Mazur & 
Bedeaux 1974; Leichtberg et al. 1976) have dealt with one of the three basic 
geometries discussed by Stokes. It is believed that the solution presented herein is 
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FIQURE 1. Axisymmetric body and cylindrical coordinate system (w, q5, z). 

the first for a different basic geometry which displays the non-quadratic behaviour 
of the h-dependence for an oscillating body and a memory function for an arbitrary 
motion U ( t )  which does not behave simply as l / t i .  

2. The hydrodynamic force for axisymmetric motion 

shown in figure 1 .  The linearized equations of motion are 
We consider a simply connected smooth body oscillating axisymmetrically as 

( 5 )  

where u is the stress tensor for the fluid and p is the fluid density. The boundary 

(6) 
conditions are : 

u,u+O asr+oo.  (7) 
In (6) i, is the unit vector along the z-axis and in (7) r = (ar4+ze)i. The linearization 
requires that the Reynolds number Re = U, L/v should be small. Here L is a typical 
dimension of the body. The motion of the boundary need not be considered, since 
for an isolated body linearization enables us to add a uniform velocity and the 
velocity field is found in terms of the instantaneous coordinate system fixed in the 
body. This point is academic for periodic motion since the ratio of the maximum 
excursion to the body lengthscale is O(Re/lA2() 4 1 by assumption. However, for 
general motions, to be discussed later, the body may have a large net displacement, 
so the above argument is important. 

We introduce a stream function in spherical coordinates, !P(r ,@, t )  so that the 

( 8 )  
velocity is given by 

Then (5 )  can be replaced by 

au 
at 

v*u = 0, p- = v - u ,  

u = U = U, i, cos wt on the body Bl, 

u = -V A (i+ !P/w). 



212 C. J .  Lawrence and S .  Weinbaum 

Equation (9) is put in dimensionless form and the time-dependence is separated by 
introducing $*(r*, 8) and u*(r*, 8 )  defined by 

Y ( r ,  8, t )  = Re{@*(r*, 8) e-iot}L2Uo, 

u(r,  8, t )  = Re{u*(r*,O) e-i"t},uUo/L, 

in terms of dimensionless coordinates r* = rfL. We now drop the asterisks to give 

V.U = -h2V A ( i + $ / W ) .  (11) 

Equation (11) is integrated over the domain 9 bounded by g1 and a large 
concentric sphere g2 of radius R. The volume integrals are changed to surface 
integrals using Stokes's theorem and we retain only the z-component of the vector 
equation : 

Here n is the local outward unit normal to the domain 9. The first integral of (12) 
is simply the force exerted by the body on the fluid, - F, and the others may be 
evaluated individually as follows. For the second integral of (12) we follow the 
method of Happel & Brenner (1965) to put it in the form : 

in which s is the coordinate along the generating arc of g2, h is defined by (2) and 
E2 is the differential operator 

Now Basset (1888) has given the general solution of (5)  subject to (7)  in terms of 
spherical harmonics : @ = $p+$D> (15) 

with 

and 

The 9,(6) are Gegenbauer functions of degree -4 of which the first few are: 

9 0 ( 6 )  = 1 ,  JflCO = -6, $2(6) = a ( 1 - p ) .  (17) 

The R J r )  are polynomials in ( l / r )  with an exponential multiplier: 

The stream function satisfies the equation 

E2(E2 - h2 I $ = = ,  (19) 

with E211rP = 0 and (E2-h2)  $D = 0, (20) 
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so $p and $D may be thought of as potential and diffusive parts of the solution. If 
there are no sources, then A, is zero. The R;(r) are exponentially small at large r ,  
so we may neglect them in (13) if R is large enough. Then (13) reduces to: 

Finally, we use the property of the Yn : 
1 

1 , ~ n ( ~ ) d ~  = 28no+~n29 

with an, the Kronecker delta. We then have 

which is independent of R. The third integral in (12) is evaluated using the condition 
(6) on &Il. The integral takes the value h2dr with drL3 the volume of the body. The 
final integral in (12) is evaluated using a procedure that is similar to that just outlined 
for the second integral, and its value is determined to be #nA2A,. 

The above results are combined to give an expression for the force on the body: 

F = A2(2~A,+dr). (24) 

The term h2Y is simply the inertial resistance of the displaced fluid. A, depends on 
h and the geometry of the body and that term has no simple interpretation. From 
(16a) and (16b), we may express A, in the form: 

r3@ 
r+m m2 

A, = 2lim-, 

(26) to give: F = A2V+47ch2 lim-. 

This is analogous to the result (4) of Payne & Pel1 (1960) for steady Stokes flow. The 
limiting behaviour of (26) as /\-to does not yield Payne & Pell’s formula, because 
the limit is singular. Even for very low frequencies the far regions are effectively 
inviscid, a fact that is ignored in the steady Stokes equation. This situation is 
analogous to Omen’s result for the non-linear inertial correction to the Stokes drag 
in steady flow, In  fact, if the limit h+O is taken before the limit r+m, it  can be 
shown that (26) does agree with (4). 

r3$ 
r+oo m2 

3. The stream function for an oblate spheroid 
An oblate spheroid with semi-axes a = b( 1 + E ) ,  b is given by 

ma 2 2  -+- = 1 .  
a2 b2 

We choose lengthscale L = b and the boundary is 

r = ro(g) = 1 + ~ 2 9 , ( ~ ) + ~ ~ 3 ( Y ~ ( ~ ) - 9 , ( ~ ) ) + 0 ( ~ ~ ) .  (28) 
We assume that E < 1 and it is convenient to move the boundary conditions from 
r = ro to  r = 1 by expanding II. and 9, in Taylor series about r = 1, retaining terms 
up  to 0 ( c 3 ) .  If we now write $ as a power series in E ,  

(29) II.(T, Y; 4 = II.ocr, 5) + .$l(., 5)  +“2$,(T, 5 )  + 0 ( E 3 ) ,  
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we have boundary-value problems for each $$ : 

C. J. Lawrence and S. Weinbaum 

E2(E2-A2)$.I = 0 (i = 0,1,2) ,  

with $$ / r2+0  as r+  00 (i = 0,1,2) ,  

and boundary conditions on r = 1 : 

with conditions on r = 1 : 
fp’ = -1, fg = -2, 

fp’ = 0, jg.) = -i(fg;+2), (41) 

fp’ = 0, f&’ = f ( f f f+2, ,  (42) 

fP’ = g(fg;+2), A? = --f fa:;+~f6:)r+~(f~;++)-~f~;f,  (43) 
j i z )  andfp) make no contribution to the force up to O(?) and we shall not need them. 
The radial dependence comes from (16a) and (16b) and we have: 

(44) 
1 
r 2  

f i t ’  = -+B(O e -A(T-1’  

The constants A t )  are determined from (40)-(43) and are 

And we can evaluate A, using 
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4. Hydrodynamic force on a spheroid 
The volume of the spheroid is 

Y = $c(l+s)2. (50) 

Using (49) and (50) in (24) we have for the force: 

) + O(~S , ]  (1  +h+iA2)+&1+2A+ih2)+~2& 1 +58h+yh2+3+3A+A2 
4A2 

(51) 

= -6n[(l+C+&a)+A(l+3+~2)+ih2(l +$+m2) 
+L( A262 )+w]. (52) 

175 3-t3A+h2 

Equation (51) is the result for a sphere with the O(6) and O(e2) corrections for the 
slightly oblate spheroid. It also holds for a prolate spheroid with 6 < 0. (Note that 
then a is the semi-minor axis.) 

For small frequencies, IAl 4 1, we recover the Stokes resistance for a slightly oblate 
spheroid which is the first term in (52). This can be demonstrated using Happel & 
Brenner's (1965) exact expression for the force on an oblate spheroid : 

(53) F = - ~ X C [ X ,  - ( x i  - 1) cot-' x0]-', 

where 
b (a2 - b2): 

b .  
x o = - ,  c =  

C 
(54) 

When c is small and xo is large, (53) becomes 

F = - 6 ~ ( 1  + $ E + + c ~ + ~ ( E ~ ) ) ,  (55) 

which is the small-h limit of (52). 

term, which gives the added-mass force on the spheroid, is given by 
For large frequencies, lAl B 1 ,  equation (52) is dominated by the ha term. This 

F = --:n~2(1 +++&a+ o ( 6 3 ) )  +o(A). (56) 

The general formula for the added mass for an arbitrary oblate spheroid is given in 
Green (1833) by 

a2 (1 + xi) (1  - xo cot-' Zo) F T - 4 ~ -  
b2 ( l + X ~ ) x o c o t ~ o - ~ ~  . (57) 

Again, when c is small and xo is large, (57) reduces to (56). 
Curiously, the O(A) corrections to (55) and (56) are the same, viz. 

6 x 4  1 + 6 + #z2 + 0(s3)). (58) 

This is identical in form to the Basset force on a sphere, and so should retain that 
name. However, if we carried the expansion further, the O(s3) term would be different 
at high and low frequencies, so for a general body the Basset force may need to be 
redefined. 

There is an additional term in (52) which is O(h2) for small A and O(1) for large 
A so it only contributes to the second-order correction to (55) or (56). It is this term 
which prevents the force from being quadratic in h and it is a mathematically different 
contribution to the hydrodynamic force. Although it is small, the term is conceptually 
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1 

FIQTJRE 2. The memory functions t4 and G(t) used in (59). 

important because it indicates the presence of a complex interaction between body 
shape and frequency, which heretofore was not recognized. It is likely that this term 
will be more important for a general body whose shape departs significantly from a 
sphere, although its importance cannot be predicted from the present results. 

5. Inverse Laplace transform 
Equation (11) can be regarded as a Laplace transform of (5 )  with transform 

variable s = ha. If we allow the velocity of the body to have arbitrary time 
dependence, we can perform a superposition of the harmonic motions which is 
equivalent to an inverse Laplace transform. Suppose that U(t)  is zero for t < 0 and 
varies arbitrarily thereafter, then we can invert (52) formally to give the hydro- 
dynamic force on the body, F(t) : 

tdU d7 
F(t)  = -6n(1+$+&e2) U ( t ) - 6 d ( l + $ + ~ ' ) ~  -- 

d7 ( t -7);  

with 

and 

G(t)  = Im {(na); eat erfc (at);}, 

a = 3eiin = f ( l +  d3i ) .  

The first three terms of (59) are the standard forms for the Stokes drag, Basset force 
and added-mass force respectively. The fourth term, like the Basset force, is a 
memory integral of the previous accelerations of the body, but the kernel function 
G(t )  is of a different nature to the t-4 in the Basset force, as can be seen in figure 2. 
The two functions are asymptotically different for large t ,  and G is not infinite for 
small t .  Thus the recent history is not emphasized in the second integral as it  is in 
the Basset force, and in most cases the contribution from G(t )  will be very small. The 
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behaviour of G(t)  is found from Abramowitz & Stegun (1965). For small t ,  we have 
a power series: 

m 
G(t)  = (37~): I: ( - l ) n  (3t)ln sin (n+ 1)$. 

n-J($+ 1) 

Thus, the limiting value is G(0)  = i(3x): and the initial slope is infinite. For large t ,  
we have an asymptotic power series : 

1.3. .. (2n- 1) 00 

sin +m . 
(Wn 

G(t)  N t-i C ( -  1)"+' 
n-1 

So G(t)  ultimately decays as (1/(42/3)) t-!. 
This analysis has been for small 8, so we cannot conclude that similar results would 

apply for a general spheroid, or other body shape. In  the general case, G(t)  can be 
any well-behaved function and the Basset force may not be so easily identifiable. The 
O(e3) term would give different behaviour for the O(A) terms at low and high 
frequency, so the behaviour of the memory function may be different. However, it 
will never be more singular for short time than the t-: in the Basset integral, whilst 
for long times, we might still expect t-4 behaviour. 

It is evident from the above that the sphere is a special case in which by 
coincidence the frequency dependence of the force decouples to some extent from the 
shape dependence. There does not appear to  be a physical reason for this; rather it 
is a consequence of the mathematical simplicity of the spherical geometry. The 
dimensionless stream function for the oscillating sphere is (Stokes 1851) 

The coefficient of the 1 / r  term is determined by the boundary condition at r = 1. We 
see that the exponential term vanishes from @ and all its derivatives at r = 1, so that 
the coefficients are determined in terms of powers of A. 
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